Search Results - material+science

4 Results Sort By:
Surface Oxophilic Single Atom Decoration of PT Catalyst for Anion Exchange Membrane Fuel Cells (Case No. 2025-263)
Summary: Researchers at UCLA's Department of Chemistry and Biochemistry have developed a novel catalyst design using oxophilic single-atom decorations that enhances the performance and durability of platinum (Pt) catalysts in alkaline exchange membrane fuel cells. Background: Hydrogen fuel cells are a promising alternative to internal combustion...
Published: 6/24/2025   |   Inventor(s): Xiangfeng Duan, Yu Huang, Chengzhang Wan
Keywords(s): anion exchange membrane fuel cells (AEMFCs), Catalysts, catalytic hydrogenation, clean energy, clean energy consumption, clean material production, Composite Material, Composite Materials, Construction Materials, Electrocatalyst, electrochemically active surface area, high-durability catalysts, Hydrogen, Hydrogen oxidation reaction, hydrogen oxidation reaction (HOR), hydrogen production, low overpotential catalysis, mass activity, material science, Materials, meta materials, Methane Reformer Hydrogen Production, microarchitectured materials, Nanomaterials, nanostructured materials, Nanotechnology, oxygen oxidation reaction, oxygen reduction reaction (ORR), Platinum group metal catalysts, proton exchange membrane fuel cells (PEMFCs), proton exchange water membrane electrolyzer (PEMWE), Rhodium-decorated Platinum nanowires (SARh-PtNW), specific activity, transition metal catalysts
Category(s): Materials, Materials > Nanotechnology, Materials > Functional Materials, Energy & Environment, Energy & Environment > Energy Generation, Energy & Environment > Energy Efficiency, Energy & Environment > Energy Transmission, Chemical, Chemical > Chemical Processing & Manufacturing, Chemical > Synthesis, Chemical > Catalysts
Efficient One-Step Chemical Conversion of MXene Into Quantum Dots (Case No. 2025-246)
Summary: UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel one-step method for producing MXene quantum dots with precise size control in an environmentally safe manner. Background: Quantum dots are widely used in bioimaging due to their tunable optical, electrical, and chemical properties. However, traditional...
Published: 6/10/2025   |   Inventor(s): Paul Weiss, Haiyue Huang, Judy Cheng
Keywords(s): Biochemistry, bioimaging, Biomaterial, Catalysts, Chemical, Chemical Manufacturing & Industrial/Bulk Chemicals, energy conversion, energy conversion applications, Functional Materials, labeling, material science, Materials, Nanomaterials, photoluminescence, Quantum Dot
Category(s): Chemical, Chemical > Synthesis, Materials, Materials > Semiconducting Materials
Emissions-Free Olefin Synthesis via Concentrated Solar-Thermal Pyrolysis for Cleaner Plastics (Case No. 2025-008)
Summary: UCLA researchers in the department of mechanical and aerospace engineering have developed a novel technology that utilizes concentrated solar radiation to convert petroleum refinery hydrocarbons into light olefins with no CO2 emissions and generates a high-value graphitic carbon co-product. Title: Emissions-Free Olefin Synthesis via Concentrated...
Published: 6/3/2025   |   Inventor(s): Anil Nair, Raymond Spearrin, Barathan Jeevaretanam
Keywords(s): bulk material, clean material production, Composite Material, Composite Materials, Concentrated Solar Power, Concentrated Solar Power Chemical Engineering, concentrated solar radiation, Construction Materials, emission free materials, ethylene, fire resistant materials, Functional Materials, graphitic carbon, HDPE, high density polyethylene, intercalated materials, LDPE, light olefin, low density polyethylene, material characterization, Material for Enhanced Photoprotection, material science, Materials, Medical Devices and Materials, Nanomaterials, olefin, olefin synthesis, plastic, plastic fabrication, plastic production, plastics, polypropylene, propylene, pyrolysis, Raw materials supplier, safe materials, Smart Material, zero emissions
Category(s): Materials, Materials > Functional Materials, Materials > Fabrication Technologies, Energy & Environment
A Highly Elastic and Tough Hydrogel for Efficient Hemostasis and Closure of Injured Internal Organs in Emergency Healthcare (UCLA Case No. 2024-001)
A research group at UCLA’s Department of Chemical and Biomedical Engineering designed a novel, customizable bioadhesive that can stop bleeding quickly and effectively in injured tissue. BACKGROUND: Traumatic injuries that involve excessive bleeding are a significant cause of mortality world-wide and account for as much as 40% of preventable...
Published: 2/14/2025   |   Inventor(s): Nasim Annabi
Keywords(s): bioadhesives, hemostasis, material science, tissue repair, Wound Healing
Category(s): Chemical > Polymers, Chemical > Coatings, Adhesives & Inks, Materials > Functional Materials, Materials > Membranes