UCLA Researchers & Innovators
Industry & Investors
News & Events
About
Concierge
Search Results - composite+materials
5
Results
Sort By:
Published Date
Updated Date
Title
ID
Descending
Ascending
Dynamic Extension of the Eyebox for Maxwellian View AR Waveguides (Case No. 2024-163)
Summary: Researchers in the Department of Electrical & Computer Engineering have developed a new metasurface material that improves the size and resolution of augmented reality overlays. Background: Augmented reality (AR) waveguide displays have revolutionized the way users can interact with virtual content overlaid in the real world. High...
Published: 11/4/2024
|
Inventor(s):
Chee Wei Wong
,
Hyunpil Boo
Keywords(s):
artificial electromagnetic materials
,
artificial-intelligent materials
,
Augmented Reality
,
augmented reality (AR)
,
bacterial nanocellulose
,
Carbon Nanotube
,
Composite Materials
,
Construction Materials
,
Extended reality
,
Functional Materials
,
intercalated materials
,
liquid crystal nanofibers
,
Materials
,
Medical Devices and Materials
,
meta materials
,
metal nanocomposites
,
metasurfaces
,
microarchitectured materials
,
Microfluidics Nanosphere
,
Mixed Reality
,
nanobody
,
nanocomposite scintillators
,
Nanocomposites
,
Nanocrystal
,
nanocrystalline metals
,
nanodispersion
,
Nanoelectronics
,
Nanoemulsion droplet
,
Nanofiber
,
nanograined metals
,
Nanomaterials
,
Nanoparticle
,
Nanoparticles
,
nanophotonic
,
nanophotonic structures
,
nanophotonics
,
Nanosensor
,
Nanostructure
,
nanostructured materials
,
Nanotechnology
,
Optoelectronic materials
,
photonic materials
,
Raw materials supplier
,
Toxicity Of Nanomaterials
,
Ultrahard materials/abrasives
,
Virtual Reality
,
Virtual Reality Braille Haptic Technology Joule Heating
,
Virtual Reality Occupational Therapy Exercise Machine
,
Water Purification, Nanofiltration, Ultrafiltration
,
zzsemiconducting materials
Category(s):
Software & Algorithms
,
Software & Algorithms > Ar/Vr
,
Materials
,
Materials >
Composite Materials
,
Materials > Functional Materials
,
Materials > Nanotechnology
Giant Second-Harmonic Generation in Bulk Monolayer MoS2 Thin Films (Case No. 2024-186)
Summary: UCLA researchers in the department of Chemistry and Biochemistry have developed a method to control electron density in molybdenum disulfide (MoS2) thin films that can be used to improve optical material characteristics. Background: Second harmonic generation (SHG) is an optical process in which light interacts with a nonlinear material...
Published: 11/19/2024
|
Inventor(s):
Xiangfeng Duan
,
Yu Huang
,
Boxuan Zhou
Keywords(s):
Adaptive Optics
,
Algorithm Optical Coherence Tomography
,
all-optical diffractive computing
,
all-optical transformation
,
Atomic Force Microscopy Optical Tweezers
,
bulk monolayer
,
Composite Material
,
Composite Materials
,
Dispersion (Optics)
,
Electro-Optics
,
Focus (Optics)
,
Functional Materials
,
Infrared Electromagnetic Spectrum Dispersion (Optics)
,
linear optics
,
material characterization
,
Materials
,
molybdenum disulfide (MOS2)
,
monolayer
,
Nanomaterials
,
Near-Field Scanning Optical Microscope
,
nonlinear dynamics
,
Nonlinear Optics
,
non-linear optics
,
Nonlinear Optics Molecular Dynamics
,
Optical Coherence
,
Optical Communication
,
Optical computing
,
optical implementation
,
Optical networks
,
optical processor
,
optical transmission
,
Optics Parabolic Reflector Curved Mirror
,
Optoelectronic materials
,
reverse engineered optical system
,
second harmonic generation
,
start to end optics design
,
Surgical Instrument Optical Coherence Tomography
Category(s):
Materials
,
Materials > Functional Materials
,
Optics & Photonics
,
Chemical
,
Chemical > Instrumentation & Analysis
Functionalized Materials for Surgical Closure Device (Case No. 2022-270)
Summary: UCLA researchers in the Department of Urology have developed a synthetic functionalized adhesive material that can be utilized for various purposes including wound closure. Background: Synthetic materials and adhesive polymers such as poly (glycerol sebacate) or PGS are often used in tissue engineering and medical devices. Such materials...
Published: 9/11/2024
|
Inventor(s):
Renea Sturm
,
George Aninwene
Keywords(s):
adhesive material
,
Biomaterial
,
Composite Material
,
Composite Materials
,
Functional Materials
,
internal suture lines
,
luminal repairs
,
Materials
,
Medical Device
,
Medical Devices and Materials
,
Smart medical device
,
suture line reinforcement
,
Urology
,
wearable medical device
,
Wound closure
,
Wound Healing
Category(s):
Medical Devices
,
Medical Devices > Surgical Tools
,
Materials
,
Materials > Functional Materials
,
Materials > Membranes
,
Chemical
,
Chemical > Polymers
Mechanical Neural-Network-Based Metamaterial That Learns Its Properties (Case No. 2022-317)
Summary: UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new type of meta-material that can actively adapt its mechanical properties from exposure to external stimuli. Background: As technologies have evolved, humans developed new methods to produce unique materials, such as plastics, steels and composites,...
Published: 10/29/2024
|
Inventor(s):
Jonathan Hopkins
,
Erwin Mulder
,
Ryan Hansen Lee
Keywords(s):
active actuators
,
additive manufacturing
,
Artificial Neural Network
,
artificial-intelligent materials
,
Composite Material
,
Composite Materials
,
Construction Materials
,
deep physical neural network
,
Flexible Electronics
,
Functional Materials
,
lattice structures
,
Materials
,
Medical Devices and Materials
,
meta materials
,
microarchitectured materials
,
Nanomaterials
,
Smart Material
,
stiffness tunability
Category(s):
Materials
,
Mechanical
,
Electrical
,
Electrical > Signal Processing
,
Software & Algorithms
2007-405 Massively Parallel Assembly of Composite Structures using Depletion Attractions
Summary: Scientists in the Department of Chemistry and Biochemistry at UCLA have identified a way to selectively order and assemble solid microcomponents dispersed in liquids into larger composite devices using attractive interactions that are geometry-dependent. This technique enables the systematic parallel fabrication of complex microstructures...
Published: 7/19/2023
|
Inventor(s):
Thomas Mason
Keywords(s):
Composite Material
,
Composite Materials
,
Lithography
,
Manufacturing
,
MEMS
,
Microelectronics
,
Microelectronics Semiconductor Device Fabrication
,
Nanotechnology
Category(s):
Materials >
Composite Materials
,
Materials
,
Materials > Nanotechnology
,
Mechanical
,
Electrical > Mems