Search Results - acoustics

2 Results Sort By:
A Fabrication Method for High-Precision, Large-Area Acoustic Single-Cell Trapping Devices (Case No. 2025-115)
Summary: UCLA researchers from the Department of Mechanical and Aerospace Engineering have developed a novel fabrication method for single-cell trapping devices. Background: Single-cell analysis is critical to personalized medicine, diagnostics, and biomedical research, as it allows researchers to identify, isolate, and expand desired cell subpopulations....
Published: 3/20/2025   |   Inventor(s): Pei-Yu Chiou, Jacob Smith
Keywords(s): acoustic manipulation, acoustics, air cavity formation, cell sorting, compliant membrane acoustic patterning (CMAP), Diagnostic Platform Technologies (E.G. Microfluidics), Digital Microfluidics, high-throughput analysis, large-area arrays, MEMS, Microfluidics, Microfluidics And Mem's, Microfluidics Dielectrophoresis, Microfluidics Multi-Band Device, Microfluidics Nanosphere, near-infrared (NIR) pulsed laser, PDMS, PDMS membranes, single cell analysis, Single cell data, single-cell resolution, single-cell trapping
Category(s): Materials, Materials > Membranes, Life Science Research Tools, Life Science Research Tools > Microfluidics And Mems, Life Science Research Tools > Cell Counting And Imaging, Platforms
Method and System for Using Quantum Incompressible Fluid to Achieve Fusion from Cavitation (UCLA Case No. 2022-110)
Summary: UCLA researchers in the Department of Physics and Astronomy have developed a novel system and method to achieve thermonuclear fusion in a laboratory scale device. Background: Many energy experts believe that nuclear has a key role to play as a clean, stable, and readily-available source of power, despite a contentious history. Nuclear power...
Published: 2/14/2025   |   Inventor(s): Seth Putterman, John Koulakis
Keywords(s): acoustics, cavitation, clean energy, Fermi exclusion, Fermi fluid, fusion, fusion cavitation, incompressible fluid, molten salt, nuclear fusion, quantum incompressible fluid, sonoluminescence, thermal fusion, thermonuclear fusion, zero-carbon emission power
Category(s): Electrical, Electrical > Instrumentation, Materials, Materials > Functional Materials, Energy & Environment > Energy Generation