Search Results - optical+transmission

2 Results Sort By:
Giant Second-Harmonic Generation in Bulk Monolayer MoS2 Thin Films (Case No. 2024-186)
Summary: UCLA researchers in the department of Chemistry and Biochemistry have developed a method to control electron density in molybdenum disulfide (MoS2) thin films that can be used to improve optical material characteristics. Background: Second harmonic generation (SHG) is an optical process in which light interacts with a nonlinear material...
Published: 11/19/2024   |   Inventor(s): Xiangfeng Duan, Yu Huang, Boxuan Zhou
Keywords(s): Adaptive Optics, Algorithm Optical Coherence Tomography, all-optical diffractive computing, all-optical transformation, Atomic Force Microscopy Optical Tweezers, bulk monolayer, Composite Material, Composite Materials, Dispersion (Optics), Electro-Optics, Focus (Optics), Functional Materials, Infrared Electromagnetic Spectrum Dispersion (Optics), linear optics, material characterization, Materials, molybdenum disulfide (MOS2), monolayer, Nanomaterials, Near-Field Scanning Optical Microscope, nonlinear dynamics, Nonlinear Optics, non-linear optics, Nonlinear Optics Molecular Dynamics, Optical Coherence , Optical Communication , Optical computing, optical implementation, Optical networks, optical processor, optical transmission, Optics Parabolic Reflector Curved Mirror, Optoelectronic materials, reverse engineered optical system, second harmonic generation, start to end optics design, Surgical Instrument Optical Coherence Tomography
Category(s): Materials, Materials > Functional Materials, Optics & Photonics, Chemical, Chemical > Instrumentation & Analysis
Universal Linear Intensity Transformations Using Spatially-Incoherent Diffractive Processors (Case No. 2023-192)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel platform technology to facilitate the design of all-optical visual processors, which can be used to perform advanced computational tasks at the speed of light. Background: Information processing via light is a cutting-edge field among optics...
Published: 4/5/2024   |   Inventor(s): Aydogan Ozcan, MD Sadman Rahman, Xilin Yang
Keywords(s): Adaptive Optics, Algorithm Optical Coherence Tomography, all-optical diffractive computing, all-optical transformation, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, Atomic Force Microscopy Optical Tweezers, computational imaging, deep diffractive network, Deep Learning, Deep learning-based sensing, diffractive processor, Dispersion (Optics), Electron Microscope, Electro-Optics, fluorescence microscopy, Focus (Optics), Infrared Electromagnetic Spectrum Dispersion (Optics), interference processor, large language model (LLNMs), linear optics, linear transformations, Machine Learning, Microscope, Microscopy, Microscopy And Imaging, Near-Field Scanning Optical Microscope, neural networks, Nonlinear Optics, non-linear optics, Optical Coherence , Optical Communication , Optical computing, Optical Fiber Copper Wire And Cable, optical implementation, Optical Microscope, Optical networks, optical processor, optical transmission, Optics Parabolic Reflector Curved Mirror, phase-only diffractive network, reverse engineered optical system, Software, Software & Algorithms, Software Development Tools, spatially-incoherent light, start to end optics design, Surgical Instrument Optical Coherence Tomography, three dimensional imaging, visual computing, Waferscale Processors
Category(s): Optics & Photonics, Optics & Photonics > Microscopy, Platforms, Software & Algorithms > Image Processing, Electrical, Electrical > Signal Processing, Electrical > Computing Hardware