UCLA Researchers & Innovators
Industry & Investors
News & Events
About
Concierge
Search Results - diffractive+processor
3
Results
Sort By:
Published Date
Updated Date
Title
ID
Descending
Ascending
Monitoring Structural Health Using Diffractive Optical Processors (Case No. 2025-201)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel structural health monitoring system that is highly accurate and cost effective, addressing limitations in current infrastructure and civil health monitoring and a rise in public safety concerns. Background: The need for structural health monitoring...
Published: 6/25/2025
|
Inventor(s):
Aydogan Ozcan
,
Ertugrul Taciroglu
,
Yuntian Wang
,
Yuhang Li
Keywords(s):
3D structures
,
Adaptive Optics
,
AI-generated images and content
,
all-optical diffractive computing
,
all-optical transformation
,
analog computing
,
analog optical computing
,
Analogue Electronics
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
artificial intelligence algorithms
,
artificial intelligence augmentation
,
artificial intelligence/machine learning models
,
artificial-intelligent materials
,
civil engineering
,
civil infrastructure
,
civil monitoring
,
computational imaging
,
computational imaging task
,
Construction
,
deep diffractive network
,
Diffraction
,
diffractive design
,
diffractive image reconstruction
,
diffractive network
,
diffractive processor
,
diffractive surface
,
digital image reconstruction
,
electromagnetic spectrum
,
Electro-Optics
,
Image Analysis
,
Image Processing
,
Image Resolution
,
image restoration
,
image signal processing
,
Imaging
,
Infrastructure
,
Lens (Optics)
,
linear optics
,
Nanostructure
,
optical processor
,
optically-guided structural monitoring
,
Optics
,
passive light-matter interactions
,
security imaging
,
Signal Reconstruction
,
Structural health monitoring
,
structural health monitoring (SHM)
,
structure monitoring
,
Structures
Category(s):
Electrical
,
Electrical > Signal Processing
,
Electrical > Imaging
,
Materials
,
Materials > Construction Materials
,
Electrical > Visual Computing
,
Electrical > Computing Hardware
,
Electrical > Instrumentation
,
Energy & Environment
,
Energy & Environment > Energy Efficiency
,
Software & Algorithms
,
Software & Algorithms > Artificial Intelligence & Machine Learning
,
Software & Algorithms > Image Processing
,
Software & Algorithms > Programs
Universal Linear Intensity Transformations Using Spatially-Incoherent
Diffractive Processor
s (Case No. 2023-192)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel platform technology to facilitate the design of all-optical visual processors, which can be used to perform advanced computational tasks at the speed of light. Background: Information processing via light is a cutting-edge field among optics...
Published: 6/9/2025
|
Inventor(s):
Aydogan Ozcan
,
MD Sadman Sakib Rahman
,
Xilin Yang
Keywords(s):
Adaptive Optics
,
Algorithm Optical Coherence Tomography
,
all-optical diffractive computing
,
all-optical transformation
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
Atomic Force Microscopy Optical Tweezers
,
computational imaging
,
deep diffractive network
,
Deep Learning
,
Deep learning-based sensing
,
diffractive processor
,
Dispersion (Optics)
,
Electron Microscope
,
Electro-Optics
,
fluorescence microscopy
,
Focus (Optics)
,
Infrared Electromagnetic Spectrum Dispersion (Optics)
,
interference processor
,
large language model (LLNMs)
,
linear optics
,
linear transformations
,
Machine Learning
,
Microscope
,
Microscopy
,
Microscopy And Imaging
,
Near-Field Scanning Optical Microscope
,
neural networks
,
Nonlinear Optics
,
non-linear optics
,
Optical Coherence
,
Optical Communication
,
Optical computing
,
Optical Fiber Copper Wire And Cable
,
optical implementation
,
Optical Microscope
,
Optical networks
,
optical processor
,
optical transmission
,
Optics Parabolic Reflector Curved Mirror
,
phase-only diffractive network
,
reverse engineered optical system
,
Software
,
Software & Algorithms
,
Software Development Tools
,
spatially-incoherent light
,
start to end optics design
,
Surgical Instrument Optical Coherence Tomography
,
three dimensional imaging
,
visual computing
,
Waferscale Processors
Category(s):
Optics & Photonics
,
Optics & Photonics > Microscopy
,
Platforms
,
Software & Algorithms > Image Processing
,
Electrical
,
Electrical > Signal Processing
,
Electrical > Computing Hardware
2022-230 Polarization Multiplexed Diffractive Computing: All-Optical Implementation of a Group of Linear Transformations Through a Polarization-Encoded Diffractive Network
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed an all-optical diffractive network that can find applications in machine learning-related vision tasks and all-optical computing systems. Background: Optical computing is a gateway to the future, as it can revolutionize computation by making classically...
Published: 2/14/2025
|
Inventor(s):
Aydogan Ozcan
,
Jingxi Li
Keywords(s):
Advanced Computing / AI
,
all-optical diffractive computing
,
all-optical transformation
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
artificial-intelligent materials
,
classification
,
Deep Learning
,
diffractive network
,
diffractive processor
,
Electrical
,
Electrical Engineering
,
Internet of Things (IoT)
,
Machine Vision
,
machine vision task
,
multiplexing
,
Optical Coherence
,
Optical Communication
,
Optical Fiber Copper Wire And Cable
,
Optical Microscope
,
Optics
,
polarization multiplexed
diffractive processor
,
polarization multiplexing
,
polarization-based machine vision tasks
,
polarization-encoded diffractive network
Category(s):
Electrical
,
Electrical > Instrumentation
,
Software & Algorithms
,
Software & Algorithms > Artificial Intelligence & Machine Learning
,
Software & Algorithms > Data Analytics
,
Optics & Photonics
,
Electrical > Electronics & Semiconductors