UCLA Researchers & Innovators
Industry & Investors
News & Events
About
Concierge
Search Results - artificial+intelligence
34
Results
Sort By:
Published Date
Updated Date
Title
ID
Descending
Ascending
AI-Based Wearable Sensor for Dermatology (Case No. 2025-301)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a flexible, cost-effective, AI-enabled wearable sensor that facilitates early, non-invasive diagnosis of allergic contact dermatitis. Background: Allergic contact dermatitis (ACD) is a hypersensitivity reaction of the skin triggered by direct contact...
Published: 8/26/2025
|
Inventor(s):
Aydogan Ozcan
,
Shannon Wongvibulson
,
Paloma Casteleiro Costa
,
Gyeo-Re Han
,
Yuzhu Li
Keywords(s):
Artificial Intelligence
,
artificial intelligence
augmentation
,
artificial intelligence
/machine learning models
,
Artificial Neural Network
,
artificial-intelligent materials
,
Computer-Aided Diagnosis
,
deep neural networks (DNN)
,
Dermatology
,
electrochemical sensors
,
Medical
artificial intelligence
(AI)
,
Signal Processing
,
Signal-To-Noise Ratio
,
Skin
,
skin protection
,
wearable
,
wearable electronics
,
wearable medical device
,
wearable medical devices
,
wearable sensors
,
wearable sensors for health
Category(s):
Electrical
,
Electrical > Flexible Electronics
,
Electrical > Sensors
,
Medical Devices > Monitoring And Recording Systems
,
Therapeutics > Dermatology
,
Diagnostic Markers
Methods and Systems for Low-Cost Medical Image Annotation Using Non-experts (Case No. 2025-108)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed an AI-based interface designed to enable individuals without specialized training to identify arthritis in medical imaging. Background: The use of
artificial intelligence
(AI) for medical imaging analysis holds great promise for the future of healthcare....
Published: 7/23/2025
|
Inventor(s):
Xiang Chen
,
Youngseung Jeon
,
Christopher Hwang
Keywords(s):
3D tissue imaging
,
AI-guided diagnostics
,
AI-guided medical imaging
,
AI-guided medical intervention
,
arthritis
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
artificial intelligence
algorithms
,
artificial intelligence
augmentation
,
artificial intelligence
/machine learning models
,
Artificial Neural Network
,
bioimaging
,
Computer-Aided Diagnosis
,
computer-aided radiology
,
Diagnostic Markers & Platforms
,
Diagnostic Test
,
diagnostics
,
generative
artificial intelligence
,
Image Analysis
,
Image Resolution
,
Imaging
,
infrared thermal imaging
,
Machine Learning
,
machine learning modeling
,
machine perception
,
Magnetic Resonance Imaging Medical Physics
,
Magnetic Resonance Imaging Pathology
,
Medical
artificial intelligence
(AI)
,
Medical diagnostics
,
Medical Imaging
,
Microscopy And Imaging
,
non-invasive imaging
,
osteoarthritis
,
radial MRI
,
radiologic imaging
,
Radiology
,
Radiology / Radiomitigation
,
radiosurgery
Category(s):
Software & Algorithms
,
Software & Algorithms > AI Algorithms
,
Software & Algorithms >
Artificial Intelligence
& Machine Learning
,
Software & Algorithms > Digital Health
,
Software & Algorithms > Image Processing
,
Life Science Research Tools
,
Life Science Research Tools > Lab Equipment
,
Life Science Research Tools > Microscopy And Imaging
,
Medical Devices
,
Medical Devices > Medical Imaging
,
Medical Devices > Monitoring And Recording Systems
,
Therapeutics
,
Therapeutics > Musculoskeletal Disease
,
Therapeutics > Radiology
Monitoring Structural Health Using Diffractive Optical Processors (Case No. 2025-201)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel structural health monitoring system that is highly accurate and cost effective, addressing limitations in current infrastructure and civil health monitoring and a rise in public safety concerns. Background: The need for structural health monitoring...
Published: 7/25/2025
|
Inventor(s):
Aydogan Ozcan
,
Ertugrul Taciroglu
,
Yuntian Wang
,
Yuhang Li
Keywords(s):
3D structures
,
Adaptive Optics
,
AI-generated images and content
,
all-optical diffractive computing
,
all-optical transformation
,
analog computing
,
analog optical computing
,
Analogue Electronics
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
artificial intelligence
algorithms
,
artificial intelligence
augmentation
,
artificial intelligence
/machine learning models
,
artificial-intelligent materials
,
civil engineering
,
civil infrastructure
,
civil monitoring
,
computational imaging
,
computational imaging task
,
Construction
,
deep diffractive network
,
Diffraction
,
diffractive design
,
diffractive image reconstruction
,
diffractive network
,
diffractive processor
,
diffractive surface
,
digital image reconstruction
,
electromagnetic spectrum
,
Electro-Optics
,
Image Analysis
,
Image Processing
,
Image Resolution
,
image restoration
,
image signal processing
,
Imaging
,
Infrastructure
,
Lens (Optics)
,
linear optics
,
Nanostructure
,
optical processor
,
optically-guided structural monitoring
,
Optics
,
passive light-matter interactions
,
security imaging
,
Signal Reconstruction
,
Structural health monitoring
,
structural health monitoring (SHM)
,
structure monitoring
,
Structures
Category(s):
Electrical
,
Electrical > Signal Processing
,
Electrical > Imaging
,
Materials
,
Materials > Construction Materials
,
Electrical > Visual Computing
,
Electrical > Computing Hardware
,
Electrical > Instrumentation
,
Energy & Environment
,
Energy & Environment > Energy Efficiency
,
Software & Algorithms
,
Software & Algorithms >
Artificial Intelligence
& Machine Learning
,
Software & Algorithms > Image Processing
,
Software & Algorithms > Programs
Batch Processing Automation for Imaris Stitcher (Case No. 2025-089)
Summary: Researchers in UCLA’s Department of Neurobiology have developed a novel software tool that enhances the capabilities of Imaris Stitcher. The tool enables batch processing and automated execution of multiple image stitching jobs, significantly improving workflow efficiency and reducing hands-on time. This results in readily available,...
Published: 7/14/2025
|
Inventor(s):
Ian Bowman
,
Mitchell Rudd
,
Hong Wei Dong
Keywords(s):
3D tissue imaging
,
3D ultrasound imaging
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
artificial intelligence
algorithms
,
artificial intelligence
augmentation
,
artificial intelligence
/machine learning models
,
artificial-intelligent materials
,
bioimaging
,
Cell Counting/Imaging
,
cell imaging
,
cell mapping
,
computational imaging
,
Data Acquisition
,
Data Aggregator
,
Data Analytics
,
Data Recovery
,
Data Structure
,
Fluorescence Microscope
,
histopathology images
,
Image Analysis
,
image restoration
,
image signal processing
,
Imaging
,
Magnetic Resonance Imaging
,
Medical
artificial intelligence
(AI)
,
Medical Imaging
,
Microscope
,
Microscopy
,
Microscopy And Imaging
,
Molecular Imaging
,
multi-contrast imaging
,
Neuroimaging
,
non-invasive imaging
,
pathology image analysis
,
Phase-Contrast Imaging
,
three dimensional imaging
,
volumetric image
Category(s):
Software & Algorithms
,
Software & Algorithms > AI Algorithms
,
Software & Algorithms > Digital Health
,
Software & Algorithms > Image Processing
AI-Powered System for Objective Surgical Skill Assessment in Open Procedures (Case No. 2025-207)
Summary: UCLA researchers in the Department of Surgery have developed a deep-learning architecture to efficiently and accurately assess surgeon skill level for improved medical training. Background: Objectively assessing surgical trainee performance during open procedures remains a significant challenge in medical education. Traditional evaluations...
Published: 8/13/2025
|
Inventor(s):
Peyman Benharash
,
Armin Alipour
Keywords(s):
AI
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
deep-learning analysis algorithms
,
Education technology
,
image-guided surgery
,
medical bias reduction
,
Quality Control
,
Surgery
,
Surgical Instrument
,
Surgical Tools
,
teaching
Category(s):
Life Science Research Tools > Lab Equipment
,
Life Science Research Tools > Research Methods
,
Medical Devices > Hospital Systems
,
Medical Devices > Monitoring And Recording Systems
,
Medical Devices > Surgical Tools
,
Software & Algorithms > AI Algorithms
,
Software & Algorithms >
Artificial Intelligence
& Machine Learning
,
Software & Algorithms > Communication & Networking
,
Software & Algorithms > Digital Health
Event-Driven Integrate and Fire (EIF) Neuron Circuit for Neuromorphic Computing System (Case No. 2024-275)
Summary: Researchers in the UCLA Department of Electrical and Computer Engineering have developed an energy efficient neuromorphic computing architecture. Background: Widespread growth in demand for
artificial intelligence
systems has highlighted limitations in current central processing unit (CPU) designs, particularly in terms of energy efficiency...
Published: 8/11/2025
|
Inventor(s):
Mau-Chung Chang
,
Chao Jen Tien
,
Yong Hei
Keywords(s):
Advanced Computing / AI
,
advanced computing methods
,
AI hardware
,
analog computing
,
Artifical Intelligence (Machine Learning, Data Mining)
,
artificial electromagnetic materials
,
Artificial Intelligence
,
artificial intelligence
algorithms
,
artificial intelligence
augmentation
,
artificial intelligence
/machine learning models
,
artificial intelligence
-generated content
,
Artificial Neural Network
,
Artificial Neural Network Artificial Neuron
,
artificial presenting cells
,
artificial-intelligent materials
,
Cloud Computing
,
computational efficiency
,
computational imaging
,
compute-in-memory
,
Computer Aided Learning
,
Computer Architecture
,
Computer Monitor
,
Computer Vision
,
CPU design
,
deep neural networks (DNN)
,
Energy Density
,
Energy Efficiency
,
event-driven processing
,
generative
artificial intelligence
,
latency encoding
,
low latency computing
,
low-power architecture
,
matrix multiplication
,
Medical
artificial intelligence
(AI)
,
Neuromorphic computing
,
offline learning
,
online learning
,
spike neural networks (SNN)
,
Supercomputer
Category(s):
Electrical
,
Electrical > Signal Processing
,
Electrical > Electronics & Semiconductors
,
Electrical > Computing Hardware
,
Software & Algorithms
,
Software & Algorithms >
Artificial Intelligence
& Machine Learning
Artificial Neural Network Train-Time Poison Defense via Energy-Based Model Dynamics Sampling (Case No. 2024-199)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel preprocessing algorithm to purify imperceptibly poisoned training datasets that may lead to misclassification and maintain image quality. Background: Large datasets are important for the effectiveness of machine learning models, serving as the...
Published: 5/6/2025
|
Inventor(s):
Gregory Pottie
,
Omead Pooladzandi
,
Sunay Bhat
,
Jeffrey Jiang
Keywords(s):
AI algorithms
,
Algorithm
,
Artificial Intelligence
,
artificial intelligence
augmentation
,
Automation
,
Autonomous driving
,
Big Data
,
Computer Aided Learning
,
Data Corruption
,
Digital Health
,
Machine Learning
,
Machine Learning Autonomous Car Gradient Descent
Category(s):
Software & Algorithms
,
Platforms > Diagnostic Platform Technologies
,
Therapeutics > Radiology
,
Medical Devices > Monitoring And Recording Systems
,
Medical Devices > Neural Stimulation
,
Mechanical > Sensors
A Method and System for Pre-processing Medical Images (Case No. 2024-177)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel pre-processing computer algorithm for automated medical imaging. Background: The integration of machine learning and
artificial intelligence
into medical imaging applications offers significant potential to automate the diagnosis of various...
Published: 2/14/2025
|
Inventor(s):
Bahram Jalali
,
Callen MacPhee
,
Yiming Zhou
,
Koichiro Kishima
Keywords(s):
3D ultrasound imaging
,
Artificial Intelligence
,
bioimaging
,
Computer Vision
,
histopathology images
,
Machine Learning
,
Medical Imaging
,
MRI
,
X-Ray
Category(s):
Diagnostic Markers > Cancer
,
Diagnostic Markers > Immunology
,
Software & Algorithms >
Artificial Intelligence
& Machine Learning
,
Software & Algorithms > Digital Health
,
Software & Algorithms > Image Processing
Full Spectrum Computer Vision for Photon Counting CT (Case No. 2024-058)
Summary: Researchers in the Department of Radiological Sciences have developed a machine learning algorithm that processes multispectral photon counting CT data for accurate medical imaging. Background: Photon counting computed tomography (PCCT) is a tremendous engineering advancement, enabling high resolution spectral imaging with myriad applications....
Published: 7/29/2025
|
Inventor(s):
Matthew Brown
,
Dieter Enzmann
,
John Hoffman
,
Michael Mcnitt-Gray
Keywords(s):
AI algorithms
,
Algorithm
,
Algorithm Optical Coherence Tomography
,
algorithmic cancer detection
,
Artifical Intelligence (Machine Learning, Data Mining)
,
artificial electromagnetic materials
,
Artificial Intelligence
,
artificial intelligence
augmentation
,
Artificial Neural Network
,
Artificial Neural Network Artificial Neuron
,
artificial-intelligent materials
,
Big Data
,
Bladder Cancer
,
blood cancers
,
Brain cancer
,
Breast Cancer
,
Cancer
,
cancer antigen
,
cancer detection
,
Cancer Immunotherapy
,
Cancer stem cells
,
cancer target
,
Computed tomography
,
CT
,
Deep Learning
,
design software
,
Digital Pathology
,
generative
artificial intelligence
,
Genetic Algorithm
,
Histopathological image analysis
,
Histopathology
,
histopathology images
,
hyperparameter optimization
,
Image Analysis
,
Image Processing
,
lympathic cancers
,
lymphatic cancer
,
Medical
artificial intelligence
(AI)
,
Mesenchymal Stem Cell Derived Cancer Cells
,
Orthotopic cancer models
,
Pancreatic cancer
,
pathology image analysis
,
Photon counting computed tomography (PCCT)
,
prostate cancer
,
Radiology
,
Radiology / Radiomitigation
,
Software
,
Software & Algorithms
,
Software Development Tools
,
Software-enabled learning
Category(s):
Software & Algorithms
,
Software & Algorithms > Image Processing
,
Software & Algorithms >
Artificial Intelligence
& Machine Learning
,
Software & Algorithms > Data Analytics
Universal Linear Intensity Transformations Using Spatially-Incoherent Diffractive Processors (Case No. 2023-192)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel platform technology to facilitate the design of all-optical visual processors, which can be used to perform advanced computational tasks at the speed of light. Background: Information processing via light is a cutting-edge field among optics...
Published: 6/9/2025
|
Inventor(s):
Aydogan Ozcan
,
MD Sadman Sakib Rahman
,
Xilin Yang
Keywords(s):
Adaptive Optics
,
Algorithm Optical Coherence Tomography
,
all-optical diffractive computing
,
all-optical transformation
,
Artifical Intelligence (Machine Learning, Data Mining)
,
Artificial Intelligence
,
Atomic Force Microscopy Optical Tweezers
,
computational imaging
,
deep diffractive network
,
Deep Learning
,
Deep learning-based sensing
,
diffractive processor
,
Dispersion (Optics)
,
Electron Microscope
,
Electro-Optics
,
fluorescence microscopy
,
Focus (Optics)
,
Infrared Electromagnetic Spectrum Dispersion (Optics)
,
interference processor
,
large language model (LLNMs)
,
linear optics
,
linear transformations
,
Machine Learning
,
Microscope
,
Microscopy
,
Microscopy And Imaging
,
Near-Field Scanning Optical Microscope
,
neural networks
,
Nonlinear Optics
,
non-linear optics
,
Optical Coherence
,
Optical Communication
,
Optical computing
,
Optical Fiber Copper Wire And Cable
,
optical implementation
,
Optical Microscope
,
Optical networks
,
optical processor
,
optical transmission
,
Optics Parabolic Reflector Curved Mirror
,
phase-only diffractive network
,
reverse engineered optical system
,
Software
,
Software & Algorithms
,
Software Development Tools
,
spatially-incoherent light
,
start to end optics design
,
Surgical Instrument Optical Coherence Tomography
,
three dimensional imaging
,
visual computing
,
Waferscale Processors
Category(s):
Optics & Photonics
,
Optics & Photonics > Microscopy
,
Platforms
,
Software & Algorithms > Image Processing
,
Electrical
,
Electrical > Signal Processing
,
Electrical > Computing Hardware
1
2
3
4