Search Results - artificial+intelligence

34 Results Sort By:
AI-Based Wearable Sensor for Dermatology (Case No. 2025-301)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a flexible, cost-effective, AI-enabled wearable sensor that facilitates early, non-invasive diagnosis of allergic contact dermatitis. Background: Allergic contact dermatitis (ACD) is a hypersensitivity reaction of the skin triggered by direct contact...
Published: 8/26/2025   |   Inventor(s): Aydogan Ozcan, Shannon Wongvibulson, Paloma Casteleiro Costa, Gyeo-Re Han, Yuzhu Li
Keywords(s): Artificial Intelligence, artificial intelligence augmentation, artificial intelligence/machine learning models, Artificial Neural Network, artificial-intelligent materials, Computer-Aided Diagnosis, deep neural networks (DNN), Dermatology, electrochemical sensors, Medical artificial intelligence (AI), Signal Processing, Signal-To-Noise Ratio, Skin, skin protection, wearable, wearable electronics, wearable medical device, wearable medical devices, wearable sensors, wearable sensors for health
Category(s): Electrical, Electrical > Flexible Electronics, Electrical > Sensors, Medical Devices > Monitoring And Recording Systems, Therapeutics > Dermatology, Diagnostic Markers
Methods and Systems for Low-Cost Medical Image Annotation Using Non-experts (Case No. 2025-108)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed an AI-based interface designed to enable individuals without specialized training to identify arthritis in medical imaging. Background: The use of artificial intelligence (AI) for medical imaging analysis holds great promise for the future of healthcare....
Published: 7/23/2025   |   Inventor(s): Xiang Chen, Youngseung Jeon, Christopher Hwang
Keywords(s): 3D tissue imaging, AI-guided diagnostics, AI-guided medical imaging, AI-guided medical intervention, arthritis, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, artificial intelligence algorithms, artificial intelligence augmentation, artificial intelligence/machine learning models, Artificial Neural Network, bioimaging, Computer-Aided Diagnosis, computer-aided radiology, Diagnostic Markers & Platforms, Diagnostic Test, diagnostics, generative artificial intelligence, Image Analysis, Image Resolution, Imaging, infrared thermal imaging, Machine Learning, machine learning modeling, machine perception, Magnetic Resonance Imaging Medical Physics, Magnetic Resonance Imaging Pathology, Medical artificial intelligence (AI), Medical diagnostics, Medical Imaging, Microscopy And Imaging, non-invasive imaging, osteoarthritis, radial MRI, radiologic imaging, Radiology, Radiology / Radiomitigation, radiosurgery
Category(s): Software & Algorithms, Software & Algorithms > AI Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Digital Health, Software & Algorithms > Image Processing, Life Science Research Tools, Life Science Research Tools > Lab Equipment, Life Science Research Tools > Microscopy And Imaging, Medical Devices, Medical Devices > Medical Imaging, Medical Devices > Monitoring And Recording Systems, Therapeutics, Therapeutics > Musculoskeletal Disease, Therapeutics > Radiology
Monitoring Structural Health Using Diffractive Optical Processors (Case No. 2025-201)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel structural health monitoring system that is highly accurate and cost effective, addressing limitations in current infrastructure and civil health monitoring and a rise in public safety concerns. Background: The need for structural health monitoring...
Published: 7/25/2025   |   Inventor(s): Aydogan Ozcan, Ertugrul Taciroglu, Yuntian Wang, Yuhang Li
Keywords(s): 3D structures, Adaptive Optics, AI-generated images and content, all-optical diffractive computing, all-optical transformation, analog computing, analog optical computing, Analogue Electronics, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, artificial intelligence algorithms, artificial intelligence augmentation, artificial intelligence/machine learning models, artificial-intelligent materials, civil engineering, civil infrastructure, civil monitoring, computational imaging, computational imaging task, Construction, deep diffractive network, Diffraction, diffractive design, diffractive image reconstruction, diffractive network, diffractive processor, diffractive surface, digital image reconstruction, electromagnetic spectrum, Electro-Optics, Image Analysis, Image Processing, Image Resolution, image restoration, image signal processing, Imaging, Infrastructure, Lens (Optics), linear optics, Nanostructure, optical processor, optically-guided structural monitoring, Optics, passive light-matter interactions, security imaging, Signal Reconstruction, Structural health monitoring, structural health monitoring (SHM), structure monitoring, Structures
Category(s): Electrical, Electrical > Signal Processing, Electrical > Imaging, Materials, Materials > Construction Materials, Electrical > Visual Computing, Electrical > Computing Hardware, Electrical > Instrumentation, Energy & Environment, Energy & Environment > Energy Efficiency, Software & Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Image Processing, Software & Algorithms > Programs
Batch Processing Automation for Imaris Stitcher (Case No. 2025-089)
Summary: Researchers in UCLA’s Department of Neurobiology have developed a novel software tool that enhances the capabilities of Imaris Stitcher. The tool enables batch processing and automated execution of multiple image stitching jobs, significantly improving workflow efficiency and reducing hands-on time. This results in readily available,...
Published: 7/14/2025   |   Inventor(s): Ian Bowman, Mitchell Rudd, Hong Wei Dong
Keywords(s): 3D tissue imaging, 3D ultrasound imaging, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, artificial intelligence algorithms, artificial intelligence augmentation, artificial intelligence/machine learning models, artificial-intelligent materials, bioimaging, Cell Counting/Imaging, cell imaging, cell mapping, computational imaging, Data Acquisition, Data Aggregator, Data Analytics, Data Recovery, Data Structure, Fluorescence Microscope, histopathology images, Image Analysis, image restoration, image signal processing, Imaging, Magnetic Resonance Imaging, Medical artificial intelligence (AI), Medical Imaging, Microscope, Microscopy, Microscopy And Imaging, Molecular Imaging, multi-contrast imaging, Neuroimaging, non-invasive imaging, pathology image analysis, Phase-Contrast Imaging, three dimensional imaging, volumetric image
Category(s): Software & Algorithms, Software & Algorithms > AI Algorithms, Software & Algorithms > Digital Health, Software & Algorithms > Image Processing
AI-Powered System for Objective Surgical Skill Assessment in Open Procedures (Case No. 2025-207)
Summary: UCLA researchers in the Department of Surgery have developed a deep-learning architecture to efficiently and accurately assess surgeon skill level for improved medical training. Background: Objectively assessing surgical trainee performance during open procedures remains a significant challenge in medical education. Traditional evaluations...
Published: 8/13/2025   |   Inventor(s): Peyman Benharash, Armin Alipour
Keywords(s): AI, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, deep-learning analysis algorithms, Education technology, image-guided surgery, medical bias reduction, Quality Control, Surgery, Surgical Instrument, Surgical Tools, teaching
Category(s): Life Science Research Tools > Lab Equipment, Life Science Research Tools > Research Methods, Medical Devices > Hospital Systems, Medical Devices > Monitoring And Recording Systems, Medical Devices > Surgical Tools, Software & Algorithms > AI Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Communication & Networking, Software & Algorithms > Digital Health
Event-Driven Integrate and Fire (EIF) Neuron Circuit for Neuromorphic Computing System (Case No. 2024-275)
Summary: Researchers in the UCLA Department of Electrical and Computer Engineering have developed an energy efficient neuromorphic computing architecture. Background: Widespread growth in demand for artificial intelligence systems has highlighted limitations in current central processing unit (CPU) designs, particularly in terms of energy efficiency...
Published: 8/11/2025   |   Inventor(s): Mau-Chung Chang, Chao Jen Tien, Yong Hei
Keywords(s): Advanced Computing / AI, advanced computing methods, AI hardware, analog computing, Artifical Intelligence (Machine Learning, Data Mining), artificial electromagnetic materials, Artificial Intelligence, artificial intelligence algorithms, artificial intelligence augmentation, artificial intelligence/machine learning models, artificial intelligence-generated content, Artificial Neural Network, Artificial Neural Network Artificial Neuron, artificial presenting cells, artificial-intelligent materials, Cloud Computing, computational efficiency, computational imaging, compute-in-memory, Computer Aided Learning, Computer Architecture, Computer Monitor, Computer Vision, CPU design, deep neural networks (DNN), Energy Density, Energy Efficiency, event-driven processing, generative artificial intelligence, latency encoding, low latency computing, low-power architecture, matrix multiplication, Medical artificial intelligence (AI), Neuromorphic computing, offline learning, online learning, spike neural networks (SNN), Supercomputer
Category(s): Electrical, Electrical > Signal Processing, Electrical > Electronics & Semiconductors, Electrical > Computing Hardware, Software & Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning
Artificial Neural Network Train-Time Poison Defense via Energy-Based Model Dynamics Sampling (Case No. 2024-199)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel preprocessing algorithm to purify imperceptibly poisoned training datasets that may lead to misclassification and maintain image quality. Background: Large datasets are important for the effectiveness of machine learning models, serving as the...
Published: 5/6/2025   |   Inventor(s): Gregory Pottie, Omead Pooladzandi, Sunay Bhat, Jeffrey Jiang
Keywords(s): AI algorithms, Algorithm, Artificial Intelligence, artificial intelligence augmentation, Automation, Autonomous driving, Big Data, Computer Aided Learning, Data Corruption, Digital Health, Machine Learning, Machine Learning Autonomous Car Gradient Descent
Category(s): Software & Algorithms, Platforms > Diagnostic Platform Technologies, Therapeutics > Radiology, Medical Devices > Monitoring And Recording Systems, Medical Devices > Neural Stimulation, Mechanical > Sensors
A Method and System for Pre-processing Medical Images (Case No. 2024-177)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel pre-processing computer algorithm for automated medical imaging. Background: The integration of machine learning and artificial intelligence into medical imaging applications offers significant potential to automate the diagnosis of various...
Published: 2/14/2025   |   Inventor(s): Bahram Jalali, Callen MacPhee, Yiming Zhou, Koichiro Kishima
Keywords(s): 3D ultrasound imaging, Artificial Intelligence, bioimaging, Computer Vision, histopathology images, Machine Learning, Medical Imaging, MRI, X-Ray
Category(s): Diagnostic Markers > Cancer, Diagnostic Markers > Immunology, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Digital Health, Software & Algorithms > Image Processing
Full Spectrum Computer Vision for Photon Counting CT (Case No. 2024-058)
Summary: Researchers in the Department of Radiological Sciences have developed a machine learning algorithm that processes multispectral photon counting CT data for accurate medical imaging. Background: Photon counting computed tomography (PCCT) is a tremendous engineering advancement, enabling high resolution spectral imaging with myriad applications....
Published: 7/29/2025   |   Inventor(s): Matthew Brown, Dieter Enzmann, John Hoffman, Michael Mcnitt-Gray
Keywords(s): AI algorithms, Algorithm, Algorithm Optical Coherence Tomography, algorithmic cancer detection, Artifical Intelligence (Machine Learning, Data Mining), artificial electromagnetic materials, Artificial Intelligence, artificial intelligence augmentation, Artificial Neural Network, Artificial Neural Network Artificial Neuron, artificial-intelligent materials, Big Data, Bladder Cancer, blood cancers, Brain cancer, Breast Cancer, Cancer, cancer antigen, cancer detection, Cancer Immunotherapy, Cancer stem cells, cancer target, Computed tomography, CT, Deep Learning, design software, Digital Pathology, generative artificial intelligence, Genetic Algorithm, Histopathological image analysis, Histopathology, histopathology images, hyperparameter optimization, Image Analysis, Image Processing, lympathic cancers, lymphatic cancer, Medical artificial intelligence (AI), Mesenchymal Stem Cell Derived Cancer Cells, Orthotopic cancer models, Pancreatic cancer, pathology image analysis, Photon counting computed tomography (PCCT), prostate cancer, Radiology, Radiology / Radiomitigation, Software, Software & Algorithms, Software Development Tools, Software-enabled learning
Category(s): Software & Algorithms, Software & Algorithms > Image Processing, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Data Analytics
Universal Linear Intensity Transformations Using Spatially-Incoherent Diffractive Processors (Case No. 2023-192)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel platform technology to facilitate the design of all-optical visual processors, which can be used to perform advanced computational tasks at the speed of light. Background: Information processing via light is a cutting-edge field among optics...
Published: 6/9/2025   |   Inventor(s): Aydogan Ozcan, MD Sadman Sakib Rahman, Xilin Yang
Keywords(s): Adaptive Optics, Algorithm Optical Coherence Tomography, all-optical diffractive computing, all-optical transformation, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, Atomic Force Microscopy Optical Tweezers, computational imaging, deep diffractive network, Deep Learning, Deep learning-based sensing, diffractive processor, Dispersion (Optics), Electron Microscope, Electro-Optics, fluorescence microscopy, Focus (Optics), Infrared Electromagnetic Spectrum Dispersion (Optics), interference processor, large language model (LLNMs), linear optics, linear transformations, Machine Learning, Microscope, Microscopy, Microscopy And Imaging, Near-Field Scanning Optical Microscope, neural networks, Nonlinear Optics, non-linear optics, Optical Coherence , Optical Communication , Optical computing, Optical Fiber Copper Wire And Cable, optical implementation, Optical Microscope, Optical networks, optical processor, optical transmission, Optics Parabolic Reflector Curved Mirror, phase-only diffractive network, reverse engineered optical system, Software, Software & Algorithms, Software Development Tools, spatially-incoherent light, start to end optics design, Surgical Instrument Optical Coherence Tomography, three dimensional imaging, visual computing, Waferscale Processors
Category(s): Optics & Photonics, Optics & Photonics > Microscopy, Platforms, Software & Algorithms > Image Processing, Electrical, Electrical > Signal Processing, Electrical > Computing Hardware
1 2 3 4