UCLA Researchers & Innovators
Industry & Investors
News & Events
About
Concierge
Search Results - power+conversion+efficiency
5
Results
Sort By:
Published Date
Updated Date
Title
ID
Descending
Ascending
Carrier Storage Frequency Divider Using Silicon PIN Diodes (Case No. 2025-023)
Summary: Researchers in UCLA’s Department of Electrical and Computer Engineering have designed and fabricated an innovative device capable of frequency division at the Terahertz range, featuring low power consumption, quadrature outputs, and high sensitivity. Background: Traditional electronic and optical devices struggle to operate at the...
Published: 2/14/2025
|
Inventor(s):
Sidharth Thomas
,
Aydin Babakhani
,
Benyamin Fallahi Motlagh
Keywords(s):
Analogue Electronics
,
Antennas/Wireless
,
artificial electromagnetic materials
,
Bandwidth (Signal Processing)
,
Bioelectromagnetics
,
bioelectronics
,
bistable electroactive polymer
,
Cardiac Electrophysiology
,
Consumer Electronics
,
Continuous-Wave Radar
,
Digital Electronics
,
Digital Signal Processing
,
Electrical Engineering
,
Electroactive Polymers
,
Electrocatalyst
,
electrochemical sensors
,
Electrode
,
Electrode 3D Printing
,
electrodeposition
,
electrodes
,
Electroencephalography
,
Electroencephalography (EEG)
,
Electroencephalography Microsecond Neurofeedback
,
Electrolyte
,
electromagnetic
,
Electromagnetism
,
Electron
,
electron emittance
,
Electron Gun
,
Electronics & Semiconductors
,
energy-efficient wireless communication
,
Extremely High Frequency
,
high-frequency signals
,
image signal processing
,
Imaging
,
Integrated Circuit
,
low-power device
,
Optical networks
,
PIN Diode
,
power conversion efficiency
,
Radar
,
Radar / Antennae
,
Remote Sensing
,
Semiconductor
,
Semiconductor Device
,
Semiconductors
,
signal decoding
,
Signal Processing
,
Silicon
,
Synthetic aperture radar (SAR)
,
Wireless
,
wireless communication
,
wireless connectivity
,
Wireless Sensor Network
,
wireless spectrum
Category(s):
Electrical > Electronics & Semiconductors
,
Electrical > Electronics & Semiconductors > Circuits
,
Electrical
,
Electrical > Wireless
,
Electrical > Signal Processing
Chip-Scale Monolithic Led-Photovoltaic Voltage Boost Conversion (Case No. 2025-033)
Summary: UCLA researchers in the Department of Materials Science and Engineering have developed a non-switching optoelectronic voltage conversion platform capable of voltage boost conversion at low input voltages on a miniature scale. Background: Voltage conversion is crucial for powering industrial systems, home appliances, electric vehicles, and...
Published: 2/18/2025
|
Inventor(s):
Aaswath Raman
,
Parthiban Santhanam
Keywords(s):
Application-Specific Integrated Circuit
,
Audio Power Amplifier
,
Autonomous Energy
,
clean energy
,
clean energy consumption
,
Compressed Air Energy Storage
,
Concentrated Solar Power
,
Concentrated Solar Power Chemical Engineering
,
conversion efficiency photoelectric
,
Doping (Semiconductor)
,
Electronics & Semiconductors
,
Energy & Water
,
Energy Balance (Biology)
,
energy conversion
,
energy conversion applications
,
Energy Density
,
Energy Density Boiling Point
,
Energy Density Silicide
,
Energy Density Strong Interaction
,
Energy Efficiency
,
energy efficient IoT
,
Energy Generation & Storage
,
Energy Generation, Transmission, or Storage
,
Energy Harvesting
,
Energy Harvesting Evaporation
,
energy management
,
Energy Management System
,
Energy positive
,
energy recycle
,
Energy Recycling
,
Energy Security
,
high-powered laser systems
,
Integrated Circuit
,
Integrated Circuit Standing Wave
,
Integrated Circuit Via (Electronics)
,
interaction-powered
,
low-power device
,
Microelectronics Semiconductor Device Fabrication
,
Mixed-Signal Integrated Circuit
,
Monolithic Microwave Integrated Circuit
,
nanophotonic
,
nanophotonic structures
,
nanophotonics
,
Network Analysis (Electrical Circuits)
,
Neuromorphic circuits
,
OLED
,
Optoelectronics
,
Optoelectronics Waveguide (Electromagnetism)
,
Organic Semiconductor
,
people-as-power
,
photonic
,
Photonic Integrated Circuit
,
photonic materials
,
Photonic structures
,
Photonics
,
power amplifier
,
Power Amplifier Circuit
,
power conversion efficiency
,
Power distribution & grids
,
Power Electronics
,
Power Transmission
,
Printed Circuit Board
,
self-powered wireless sensor solutions
,
Semiconductor
,
semiconductor chip foundries
,
Semiconductor Device
,
Semiconductor Device Fabrication
,
Semiconductor Ohmic Contact
,
Semiconductor Risk Assessment
,
Semiconductor Sapphire
,
Semiconductors
,
Short Circuit
,
soft electrical circuits
,
thermal circuit
,
Three-Dimensional Integrated Circuit
,
wearable electronics
,
zero-carbon emission power
,
zzsemiconducting materials
Category(s):
Electrical
,
Electrical > Electronics & Semiconductors
,
Materials
,
Materials > Semiconducting Materials
,
Electrical > Electronics & Semiconductors > Circuits
,
Energy & Environment
,
Energy & Environment > Energy Efficiency
,
Optics & Photonics
Electrolyzer Column (Case No. 2025-032)
Summary: UCLA researchers in the Department of Chemical Engineering have developed a novel system for efficiently converting carbon dioxide to liquid fuel for sustainable energy storage and utilization. Background: The conversion of carbon dioxide (CO2) into high-energy-density liquid fuel presents a promising pathway for sustainable energy storage...
Published: 2/14/2025
|
Inventor(s):
Carlos Morales Guio
,
Philippe Sautet
Keywords(s):
Carbon Dioxide
,
clean energy
,
conversion efficiency photoelectric
,
Electrocatalyst
,
energy conversion
,
Energy Generation & Storage
,
power conversion efficiency
,
Power Electronics
,
Renewable Energy
,
renewable fuel
Category(s):
Energy & Environment > Energy Storage > Fuel Cells
,
Energy & Environment > Energy Efficiency
Bringing Millimeter Wave Technology to Any IOT Device (Case No. 2023-280)
Summary: UCLA researchers in the Department of Computer Science have developed a novel method of enabling any existing Internet of Things (IoT) device to operate at higher frequencies of the wireless spectrum. Background: The growing presence of smart devices that can communicate, sense, and process data places demands on current wireless networks....
Published: 3/4/2025
|
Inventor(s):
Mohammad Hossein Mazaheri Kalahrody
,
Joerg Widmer
,
Domenico Giustiniano
,
Rafael Ruiz
,
Omid Abari
Keywords(s):
BLE
,
Communication & Networking
,
Communications Satellite
,
device enhancement
,
downlink
,
Electrical
,
Electrical Brain Stimulation
,
Electrical Breakdown
,
Electrical Engineering
,
Electrical Impedance
,
Electrical Load
,
Electrical Load Equation Of State
,
Electrical Resistance And Conductance
,
Electrical Resistivity And Conductivity
,
electrically small antennas (ESAs)
,
electrically-mediated sensing
,
energy efficient IoT
,
energy-efficient wireless communication
,
Internet of Things (IoT)
,
IoT communication
,
IoT connectivity
,
LoRa
,
low-power device
,
Network Analysis (Electrical Circuits)
,
operating range
,
Optical Communication
,
power conversion efficiency
,
quantum communication
,
RGID
,
scalable communication
,
smart connectivity
,
smart technology
,
strength-electrical conductivity
,
Telecommunication
,
Transcutaneous Electrical Nerve Stimulation
,
uplink
,
WiFi
,
wireless communication
,
wireless connectivity
,
wireless spectrum
Category(s):
Electrical
,
Electrical > Wireless
,
Software & Algorithms
,
Software & Algorithms > Communication & Networking
2023-087 Thiophene Configurable Amorphous Small Molecular Hole Transporting Material for Efficient and Stable Perovskite Solar Cell
Summary: UCLA researchers in the Department of Materials Science and Engineering have invented a series of hole transporting materials that have enabled among the highest recorded power conversion efficiencies for perovskite solar cells while maintaining high device stability and low cost. Background: Perovskite solar cells (PSCs) are an emerging...
Published: 2/14/2025
|
Inventor(s):
Yang Yang
,
Dong Meng
Keywords(s):
buffer layer
,
charge collection
,
charge collection efficiency
,
charge extraction
,
charge-transfer
,
device architectures
,
device stability
,
hole transporting material
,
hydrophobicity
,
interfacial layer
,
ion-migration
,
n-i-p device
,
perovskite
,
Perovskite Lead(II) Iodide
,
perovskite solar cell
,
photostability
,
p-i-n device
,
power conversion efficiency
,
radiosurgery
,
Silicon Working Electrode Perovskite (Structure)
,
spinal surgery
,
thermal stability
Category(s):
Chemical
,
Electrical
,
Energy & Environment > Energy Generation > Solar
,
Materials
,
Materials > Functional Materials
,
Electrical > Electronics & Semiconductors