Search Results - electrical+%3e+computing+hardware

6 Results Sort By:
Monitoring Structural Health Using Diffractive Optical Processors (Case No. 2025-201)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel structural health monitoring system that is highly accurate and cost effective, addressing limitations in current infrastructure and civil health monitoring and a rise in public safety concerns. Background: The need for structural health monitoring...
Published: 6/25/2025   |   Inventor(s): Aydogan Ozcan, Ertugrul Taciroglu, Yuntian Wang, Yuhang Li
Keywords(s): 3D structures, Adaptive Optics, AI-generated images and content, all-optical diffractive computing, all-optical transformation, analog computing, analog optical computing, Analogue Electronics, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, artificial intelligence algorithms, artificial intelligence augmentation, artificial intelligence/machine learning models, artificial-intelligent materials, civil engineering, civil infrastructure, civil monitoring, computational imaging, computational imaging task, Construction, deep diffractive network, Diffraction, diffractive design, diffractive image reconstruction, diffractive network, diffractive processor, diffractive surface, digital image reconstruction, electromagnetic spectrum, Electro-Optics, Image Analysis, Image Processing, Image Resolution, image restoration, image signal processing, Imaging, Infrastructure, Lens (Optics), linear optics, Nanostructure, optical processor, optically-guided structural monitoring, Optics, passive light-matter interactions, security imaging, Signal Reconstruction, Structural health monitoring, structural health monitoring (SHM), structure monitoring, Structures
Category(s): Electrical, Electrical > Signal Processing, Electrical > Imaging, Materials, Materials > Construction Materials, Electrical > Visual Computing, Electrical > Computing Hardware, Electrical > Instrumentation, Energy & Environment, Energy & Environment > Energy Efficiency, Software & Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning, Software & Algorithms > Image Processing, Software & Algorithms > Programs
Event-Driven Integrate and Fire (EIF) Neuron Circuit for Neuromorphic Computing System (Case No. 2024-275)
Summary: Researchers in the UCLA Department of Electrical and Computer Engineering have developed an energy efficient neuromorphic computing architecture. Background: Widespread growth in demand for artificial intelligence systems has highlighted limitations in current central processing unit (CPU) designs, particularly in terms of energy efficiency...
Published: 3/4/2025   |   Inventor(s): Mau-Chung Chang, Chao Jen Tien, Yong Hei
Keywords(s): Advanced Computing / AI, advanced computing methods, AI hardware, analog computing, Artifical Intelligence (Machine Learning, Data Mining), artificial electromagnetic materials, Artificial Intelligence, artificial intelligence algorithms, artificial intelligence augmentation, artificial intelligence/machine learning models, artificial intelligence-generated content, Artificial Neural Network, Artificial Neural Network Artificial Neuron, artificial presenting cells, artificial-intelligent materials, Cloud Computing, computational efficiency, computational imaging, compute-in-memory, Computer Aided Learning, Computer Architecture, Computer Monitor, Computer Vision, CPU design, deep neural networks (DNN), Energy Density, Energy Efficiency, event-driven processing, generative artificial intelligence, latency encoding, low latency computing, low-power architecture, matrix multiplication, Medical artificial intelligence (AI), Neuromorphic computing, offline learning, online learning, spike neural networks (SNN), Supercomputer
Category(s): Electrical, Electrical > Signal Processing, Electrical > Electronics & Semiconductors, Electrical > Computing Hardware, Software & Algorithms, Software & Algorithms > Artificial Intelligence & Machine Learning
In-Situ Stochastic Computing in Memory (Case No. 2024-121)
Summary: Researchers in the UCLA Department of Electrical and Computer Engineering have developed a data-converter-free in-memory computing circuit that greatly reduces data processing latencies. Background: Low latency and low power computing circuitry is in high demand for artificial intelligence (AI) / machine learning (ML) applications. Compute...
Published: 2/20/2025   |   Inventor(s): Sudhakar Pamarti, Jiyue Yang
Keywords(s):  
Category(s): Electrical, Electrical > Computing Hardware, Electrical > Electronics & Semiconductors, Software & Algorithms > Artificial Intelligence & Machine Learning
Efficient Stochastic Compute-In-Memory Circuit for Multi-Level OR Accumulation (Case No. 2024-122)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel computational hardware that combines stochastic computing with compute-in-memory techniques that improves speed and computational efficiency. Background: In recent years, the need for advanced computational technologies has surged, driven by...
Published: 2/14/2025   |   Inventor(s): Sudhakar Pamarti, Jiyue Yang, Soumitra Pal, Puneet Gupta, Tianmu Li, Wojciech Romaszkan
Keywords(s): computational efficiency, Computer Architecture, Integrated Circuit, Logic Gate, neural network, Stochastic Computing (SC)
Category(s): Electrical > Computing Hardware, Electrical > Electronics & Semiconductors > Circuits
A New ADC Architecture (Case No. 2023-276)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel analog-digital conversion (ADC) Architecture that achieves high-speed, high-resolution signal conversion with reduced power consumption and increased linearity. Background: High-speed, high-resolution analog-digital converters (ADCs) are what...
Published: 2/14/2025   |   Inventor(s): Utkarsh Sharma, Behzad Razavi
Keywords(s): Computer Architecture, Consumer Electronics, Digital Electronics, Digital Signal Processing, Integrated Circuit, processor design, quantum communication, Quantum Computer, Quantum Dot, quantum error correction (QEC), quantum incompressible fluid, quantum key, quantum network, quantum processing, quantum processor, Signal Processing, trapped ion quantum processor
Category(s): Electrical > Signal Processing, Electrical > Computing Hardware
Universal Linear Intensity Transformations Using Spatially-Incoherent Diffractive Processors (Case No. 2023-192)
Summary: UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel platform technology to facilitate the design of all-optical visual processors, which can be used to perform advanced computational tasks at the speed of light. Background: Information processing via light is a cutting-edge field among optics...
Published: 6/9/2025   |   Inventor(s): Aydogan Ozcan, MD Sadman Sakib Rahman, Xilin Yang
Keywords(s): Adaptive Optics, Algorithm Optical Coherence Tomography, all-optical diffractive computing, all-optical transformation, Artifical Intelligence (Machine Learning, Data Mining), Artificial Intelligence, Atomic Force Microscopy Optical Tweezers, computational imaging, deep diffractive network, Deep Learning, Deep learning-based sensing, diffractive processor, Dispersion (Optics), Electron Microscope, Electro-Optics, fluorescence microscopy, Focus (Optics), Infrared Electromagnetic Spectrum Dispersion (Optics), interference processor, large language model (LLNMs), linear optics, linear transformations, Machine Learning, Microscope, Microscopy, Microscopy And Imaging, Near-Field Scanning Optical Microscope, neural networks, Nonlinear Optics, non-linear optics, Optical Coherence , Optical Communication , Optical computing, Optical Fiber Copper Wire And Cable, optical implementation, Optical Microscope, Optical networks, optical processor, optical transmission, Optics Parabolic Reflector Curved Mirror, phase-only diffractive network, reverse engineered optical system, Software, Software & Algorithms, Software Development Tools, spatially-incoherent light, start to end optics design, Surgical Instrument Optical Coherence Tomography, three dimensional imaging, visual computing, Waferscale Processors
Category(s): Optics & Photonics, Optics & Photonics > Microscopy, Platforms, Software & Algorithms > Image Processing, Electrical, Electrical > Signal Processing, Electrical > Computing Hardware